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Introduction

A (countable) set T of classification (or regression) tasks which represent the set of possible

clients.

Data at client t ∈ T is drawn from a local distribution Dt over X × Y .
Client t ∈ T wants to learn a hypothesis ht minimizing its true risk, i.e.,

minimize
ht∈H

LDt
(ht) , E(x,y)∼Dt

[l (ht (x) , y)] . (1)

Client t ∈ T does not have access to the distribution Dt. Instead, it has a access to nt samples

drawn i.i.d. from Dt, denoted

St = {s(i)
t , (x(i)

t , y
(i)
t )}nt

i=1. (2)

Usually nt� n ,
∑

t∈T nt, thus collaboration among clients is needed in order to train better

models.

An impossibility result

Some assumption on the local data distributions Dt, t ∈ T are needed for federated learning to

be possible:

Federated learning with T clients is equivalent to T semi-supervised learning (SSL) problems,

where the SSL problem associated with client t relies on labeled samples in St and unlabeled

samples in

Ut =
⋃

t′∈[T ]\{t}
{x : (x, y) ∈ St′} .

Even when the quantity of unlabeled data goes to infinity, the worst-sample complexity of SSL

improves over supervised learning at most by a constant factor that only depends on the

hypothesis class [1, 2, 3].

Main assumptions

Motivated by the above impossibility result, in this work we propose to consider that each local

data distribution Dt is a mixture of M underlying distributions D̃m, 1 ≤ m ≤M , as formalized

below.

Assumption 1. There exist M underlying (independent) distributions D̃m, 1 ≤ m ≤ M , such

that for t ∈ T , Dt is mixture of the distributions {D̃m}Mm=1 with weights π∗t =
[
π∗t1, . . . , π∗tM

]
∈

∆M , i.e.

zt ∼M(π∗t ), ((xt, yt) |zt = m) ∼ D̃m, ∀t ∈ T , (3)

whereM(π) is a multinomial (categorical) distribution with parameters π.

Assumption 2. For all m ∈ [M ], we have D̃m(x) = D(x).
Assumption 3. H̃ = {hθ}θ∈Rd is a set of hypotheses parameterized by θ ∈ Rd, whose convex

hull is in H. For each distribution D̃m with m ∈ [M ], there exists a hypothesis hθ∗m, such that

l
(

hθ∗m(x) , y
)

= − log pm(y|x) + c, (4)

where c ∈ R, is a normalization constant. l(·, ·) is then the log loss associated to pm(y|x).
Remark: The generative model in Assumption 1 extends some popular mutli-task/personalized FL

formulation in the literature, including CLustered FL [6], Personalization via model interpolation [5],

and Federated MTL via task relationships [7]

Learning under a Mixture Model

Proposition Let l(·, ·) be the mean squared error loss, the logistic loss or the cross-entropy loss,

and Θ̆ and Π̆ be a solution of the following optimization problem:

minimize
Θ,Π

E
t∼DT

E
(x,y)∼Dt

[− logDt(x, y|Θ, πt)] , (5)

where DT is any distribution with support T . Under Assumptions 1, 2, and 3, the predictors

h∗t =
M∑

m=1
π̆tmh

θ̆m
(x) , ∀t ∈ T (6)

minimize E(x,y)∼Dt
[l(ht(x), y)] and thus solve Problem (1).

This Proposition suggests the following approach to solve Problem (1).

First, estimate Θ̆ and π̆t, 1 ≤ t ≤ T , by minimizing

f (Θ, Π) , −log p(S1:T |Θ, Π)
n

, −1
n

T∑
t=1

nt∑
i=1

log p(s(i)
t |Θ, πt). (7)

Second, use Eq. (6) to get the client predictor for the T clients present at training time.

Federated Expectation-Maximization

A natural approach to solve problem (7) is via the Expectation-Maximization algorithm (EM),

which alternates between two steps.

E-step: qk+1
t (z(i)

t = m) ∝ πk
tm · exp

(
−l(hθk

m
(x(i)

t ), y
(i)
t )

)
, t ∈ [T ], m ∈ [M ], i ∈ [nt] (8)

M-step: πk+1
tm =

∑nt
i=1 qk+1

t (z(i)
t = m)

nt
, t ∈ [T ], m ∈ [M ] (9)

θk+1
m ∈ arg min

θ∈Rd

T∑
t=1

nt∑
i=1

qk+1
t (z(i)

t = m)l
(
hθ(x(i)

t ), y
(i)
t

)
, m ∈ [M ] (10)

While the E-step (8) and the Π update (9) can be performed locally at each client, the Θ
update (10) requires interaction with other clients.

FedEM updates the local estimates of Θ through a solver which approximates the exact

minimization in (10) using only the local dataset St.

Algorithm 1 FedEM
1: Input: data S1:T ; number of mixture distributions M ; number of communication rounds K
2: for iterations k = 1, . . . , K do

3: server broadcasts θk−1
m , 1 ≤ m ≤M to the T clients

4: for tasks t = 1, . . . , T in parallel over T clients do

5: for component m = 1, . . . , M do

6: update qk
t (z(i)

t = m) as in (8), ∀i ∈ {1, . . . , nt}
7: update πk

tm as in (9)

8: θk
m,t← LocalSolver(m, θk−1

m , qk
t , St)

9: end for

10: end for

11: client t sends θk
m,t, 1 ≤ m ≤M , to the server

12: for component m = 1, . . . , M do

13: θk
m←

∑T
t=1

nt
n × θk

m,t
14: end for

15: end for

TheoremWhen clients use SGD as local solver with learning rate η = a0√
K
, after a large enough

number of communication rounds K , FedEM’s iterates satisfy:

1
K

K∑
k=1

E
∥∥∥∇Θf

(
Θk, Πk

)∥∥∥2

F
≤ O

(
1√
K

)
,

1
K

K∑
k=1

∆Πf (Θk, Πk) ≤ O
(

1
K3/4

)
, (11)

where the expectation is over the random batches samples, and

∆Πf (Θk, Πk) , f
(

Θk, Πk
)
− f

(
Θk, Πk+1

)
≥ 0. (12)

We also propose D-FedEM, a fully decentralized version of our federated EM algorithm with similar

convergence guarantees.

Experiments

Dataset Local FedAvg FedProx FedAvg+ clustered FL pFedMe FedEM (Ours)

FEMNIST 71.0 / 57.5 78.6 / 63.9 78.9 / 64.0 75.3 / 53.0 73.5 / 55.1 74.9 / 57.6 79.9 / 64.8
EMNIST 71.9 / 64.3 82.6 / 75.0 83.0 / 75.4 83.1 / 75.8 82.7 / 75.0 83.3 / 76.4 83.5 / 76.6
CIFAR10 70.2 / 48.7 78.2 / 72.4 78.0 / 70.8 82.3 / 70.6 78.6 / 71.2 81.7 / 73.6 84.3 / 78.1
CIFAR100 31.5 / 19.9 40.9 / 33.2 41.0 / 33.2 39.0 / 28.3 41.5 / 34.1 41.8 / 32.5 44.1 / 35.0
Shakespeare 32.0 / 16.6 46.7 / 42.8 45.7 / 41.9 40.0 / 25.5 46.6 / 42.7 41.2 / 36.8 46.7 / 43.0
Synthetic 65.7 / 58.4 68.2 / 58.9 68.2 / 59.0 68.9 / 60.2 69.1 / 59.0 69.2 / 61.2 74.7 / 66.7

Table 1:Test accuracy: average across clients / bottom decile.

Figure 1:Effect of client sampling rate (left) and number of mixture components M (right) on test accuracy for CI-

FAR10 [4].
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