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= A (countable) set T of classification (or regression) tasks which represent the set of possible
clients.

= Data at client ¢t € T is drawn from a local distribution Dy over X x V.
= Client t € T wants to learn a hypothesis hy minimizing its true risk, i.e.,

minitnize £, (h) = Ex y)op; [ (7t (%), 9)] (1)

= Client ¢t € T does not have access to the distribution Dy. Instead, it has a access to ny samples
drawn Li.d. from Dy, denoted

Sp={s\) 2 (=) iy 2)

= Usually ny < n = > _te7 N, thus collaboration among clients is needed in order to train better
models.

An impossibility result

Some assumption on the local data distributions Dy, t € T are needed for federated learning to
be possible:

= Federated learning with T clients is equivalent to T" semi-supervised learning (SSL) problems,
where the SSL problem associated with client ¢ relies on labeled samples in S¢ and unlabeled

samples in
Uy = U {x:(x,9) € Sy}.
t'e[T\{¢}

= Even when the quantity of unlabeled data goes to infinity, the worst-sample complexity of SSL

improves over supervised learning at most by a constant factor that only depends on the
hypothesis class [1, 2, 3].

Main assumptions

Motivated by the above impossibility result, in this work we propose to consider that each local
data distribution Dy is a mixture of M underlying distributions D,,, 1 < m < M, as formalized
below.

Assumption 1. There exist M underlying (indeper]dent) distributions D,,, 1 < m < M, such
that fort € T, Dy is mixture of the distributions {Dm}f;{:1 with weights 7} = [n}},..., 7] €
AM e i

2~ M(rf), ((xt,yt) |zt =m) ~ Dy, VteT, (3)
where M (m) is a multinomial (categorical) distribution with parameters .
Assumption 2. For all m € [M], we have Dy,(x) = D(x).

Assumption 3. H = {hg}eeRd is a set of hypotheses parameterized by 6 € RY, whose convex
hull is in . For each distribution D, with m € [M], there exists a hypothesis hg:x , such that

l (h%(X) y) = —log pm(y[x) + ¢, (4)
where ¢ € R, is a normalization constant. I(-, -) is then the log loss associated to pp,(y|x).

Remark: The generative model in Assumption 1 extends some popular mutli-task/personalized FL
formulation in the literature, including CLustered FL [6], Personalization via model interpolation [5],
and Federated MTL via task relationships |7/]

Proposition Let [(-, -) be the mean squared error loss, the logistic loss or the cross-entropy loss,
and © and II be a solution of the following optimization problem:

minimize [E E  [—logDi(x, y|O, m)], (5)
e BB [~ logDi(x, 110, )

where D is any distribution with support 7. Under Assumptions 1, 2, and 3, the predictors
M
hi=">) Timhy (x), VteT (6)
m=1

minimize E ,\p, [[(l(x), y)| and thus solve Problem (1).

This Proposition suggests the following approach to solve Problem (1).

= First, estimate © and #;, 1 <t < T, by minimizing

T Tt
£(O,1) 2 — P ;T‘ ) & -3 log p(sy |0, ). (7)
t=1 1=1

= Second, use Eq. (6) to get the client predictor for the T clients present at training time.

Federated Expectation-Maximization

= A natural approach to solve problem (7) is via the Expectation-Maximization algorithm (EM),
which alternates between two steps.

k+1 k

E-step: ¢\ = m) b - exp (_z<h%<xg@'>>,y§i>>), telT], me[M),icln] (8

k41, (2
b S g = m)

M-step: T = - , telT], me[M] (9
t
I m . N
@,,]%H € arg minz Z qu(Zng) = m)l(h@(xgz)), ygl)), m € [M] (10)
IeR? =1 =1

= While the E-step (8) and the IT update (9) can be performed locally at each client, the ©
update (10) requires interaction with other clients.

= FedEM updates the local estimates of © through a solver which approximates the exact
minimization in (10) using only the local dataset ;.

Algorithm 1 FedEM

1: Input: data Sy.7; number of mixture distributions M; number of communication rounds K
2. foriterationsk=1,..., K do
3. server broadcasts 9,,]%_1, 1 <m < M tothe T clients

4. fortaskst=1,...,T in parallel over T clients do
5 for component m =1,..., M do

6: update qf(zzgz) =m)asin(8), Vi € {1,...,n}
7 update wfm as in (9)

8 Hf%jt + LocalSolver(m, (97]%_1, qf, Si)

9 end for

10 end for
11: clienttsends 6% .. 1 <m < M, to the server

m,t?
12:  for componentm=1,..., M do
. 976 T ny 9/{
13: m S thl n X m,t

14:  end for
15: end for

Richard Vidal 3

Theorem VWhen clients use SGD as local solver with learning rate n = \?—% after a large enough
number of communication rounds K, FedEM's iterates satisfy:

K K
1 2 1 1 1
— EH G H <ol—). =S agfrermh<ol—). a1
K;lj Vof (65 1), <o = K;lj nfOf 1) <o( 7). 10
where the expectation is over the random batches samples, and

Apf(OF TiFy 2 f (@k,Hk) _ 7 (@’f,nkﬂ) > 0. (12)

We also propose D-FedEM, a fully decentralized version of our federated EM algorithnm with similar
convergence guarantees.

Experiments

Dataset Local FedAvg FedProx FedAvgt clustered FL  pFedMe FedEM (Ours)

FEMNIST ~ 71.0/57.5 78.6/63.9 78.9/64.0 75.3/53.0 73.5/55.1 74.9/57.6 79.9/64.8
EMNIST  71.9/64.3 82.6/75.0 83.0/75.4 83.1/75.8 82.7/75.0 83.3/76.4 83.5/76.6
CIFARIO  70.2/48.7 78.2/72.4 78.0/70.8 82.3/70.6 78.6/71.2 81.7/73.6 84.3/78.1
CIFAR100  31.5/19.9 40.9/33.2 41.0/33.2 39.0/28.3 41.5/34.1 41.8/32.5 44.1/35.0
Shakespeare 32.0/16.6 46.7 /42.8 45.7/41.9 40.0 /25.5 16.6/42.7 41.2/36.8 46.7 /43.0
Synthetic  65.7/58.4 68.2/58.9 68.2/59.0 68.9 /60.2 69.1/59.0 69.2/61.2 74.7/66.7

Table 1:Test accuracy: average across clients / bottom decile.

0

B
(00}
N

co
N

0]
N

(00)
o

Test accuracy
Test accuracy

—4— FedEM
FedAvg+

~J
(9)}

~
oo

0.2 0.4 0.6 0.8 1.0 2 4 5)

Sampling rate M

Figure 1:Effect of client sampling rate (left) and number of mixture components M (right) on test accuracy for ClI-
FAR1O [4].
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