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The problem Main assumption Effect of local datastore size and data heterogeneity
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Under proper assumptions, there exists ¢ € R, such that
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where dy, is the the VC dimension of the hypothesis class H, D = 2%21 ~ . Dy, and discy
Is the label discrepancy associated to the hypothesis class H.
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1. Clients train a global model hg using a federated learning algorithm, e.g., FedAvg Datacet local  FepAve FEDAVGS CLUSTEREDFL DITTo  FepRep  APFL  FVN-PER S J 5 :
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Figure: Test accuracy when a distribution shift happens at time step t, = 50 for different datastore
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